Bi-paracontact structures and Legendre foliations
نویسندگان
چکیده
منابع مشابه
Foliations and contact structures
We introduce a notion of linear deformation of codimension one foliations into contact structures and describe some foliations which deform instantly into contact structures and some which do not. Restricting ourselves to closed smooth manifolds, we obtain a necessary and su‰cient condition for a foliation defined by a closed nonsingular 1-form to be linearly deformable into contact structures....
متن کاملEngel structures with trivial characteristic foliations
Engel structures on M×S and M×I are studied in this paper, where M is a 3–dimensional manifold. We suppose that these structures have characteristic line fields parallel to the fibres, S or I . It is proved that they are characterized by contact structures on the cross section M , the twisting numbers, and Legendrian foliations on both ends M × ∂I in the case of M × I . AMS Classification 57R25...
متن کاملBi–Hamiltonian Structures and Solitons
Methods in Riemann–Finsler geometry are applied to investigate bi–Hamiltonian structures and related mKdV hierarchies of soliton equations derived geometrically from regular Lagrangians and flows of non–stretching curves in tangent bundles. The total space geometry and nonholonomic flows of curves are defined by Lagrangian semisprays inducing canonical nonlinear connections (N–connections), Sas...
متن کاملCodimension one symplectic foliations and regular Poisson structures
In this short note we give a complete characterization of a certain class of compact corank one Poisson manifolds, those equipped with a closed one-form defining the symplectic foliation and a closed two-form extending the symplectic form on each leaf. If such a manifold has a compact leaf, then all the leaves are compact, and furthermore the manifold is a mapping torus of a compact leaf. These...
متن کاملLie Algebroid Foliations and E(m)-dirac Structures
We prove some general results about the relation between the 1-cocycles of an arbitrary Lie algebroid A over M and the leaves of the Lie algebroid foliation on M associated with A. Using these results, we show that a E1(M)-Dirac structure L induces on every leaf F of its characteristic foliation a E1(F )-Dirac structure LF , which comes from a precontact structure or from a locally conformal pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 2010
ISSN: 0386-5991
DOI: 10.2996/kmj/1288962554